Principles of Observability

A presentation at DevOpsDays Tel Aviv 2021 in November 2021 in Tel Aviv-Yafo, Israel by Daniel "phrawzty" Maher

Slide 1

Slide 1

Princples of Observability ! Daniel “phrawzty” Maher Community Team

Slide 2

Slide 2

Observability ≠ Monitoring Photo: CC-BY-2.0 Steve Parker (https://flic.kr/p/afiseM) @phrawzty // Datadog 2

Slide 3

Slide 3

Observability ≠ Dashboards Photo: CC-BY-2.0 Jacob Frey 4A (https://flic.kr/p/CkXwn6) @phrawzty // Datadog 3

Slide 4

Slide 4

Observability ≠ DevOps Photo: © DevOpsDays Zurich (https://flic.kr/p/TNbJPm) @phrawzty // Datadog 4

Slide 5

Slide 5

A brief history Photo: CC-BY-ND-2.0 Bill VanderMolen (https://flic.kr/p/oE9ro2) @phrawzty // Datadog 5

Slide 6

Slide 6

James Clark Maxwell Photo: Public Domain; Jemima Blackburn (https://v.gd/ZX9L9f) @phrawzty // Datadog 6

Slide 7

Slide 7

Control theory Photo: Own work (https://flic.kr/p/cus9C1) @phrawzty // Datadog 7

Slide 8

Slide 8

Controller Sensors, feedback… Photo: Own work (https://flic.kr/p/cusaa5) @phrawzty // Datadog 8

Slide 9

Slide 9

Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. Photo: CC-BY-2.0 Tim Rechmann (https://flic.kr/p/2kvnyb3) @phrawzty // Datadog 9

Slide 10

Slide 10

Measure Photo: CC-BY-2.0 Andrew Malone (https://flic.kr/p/aqhCH8) @phrawzty // Datadog 10

Slide 11

Slide 11

State Photo: CC-BY-2.0 BenGrantham (https://flic.kr/p/eQA3Zk) @phrawzty // Datadog 11

Slide 12

Slide 12

System Photo: CC-BY-2.0 Krzysztof Pędrys (https://flic.kr/p/4tUNYV) @phrawzty // Datadog 12

Slide 13

Slide 13

Knowledge Photo: CC-BY-2.0 Fredrik Rubensson (https://flic.kr/p/dC1gvd) @phrawzty // Datadog 13

Slide 14

Slide 14

Output Photo: CC-BY-2.0 Rob Brewer (https://flic.kr/p/VXgQqu) @phrawzty // Datadog 14

Slide 15

Slide 15

Context is important (…and control theory is vast) Photo: CC-BY-SA dilettantiquity (https://flic.kr/p/ppsKuz) @phrawzty // Datadog 15

Slide 16

Slide 16

State observer Photo: CC-BY-SA John Dyhouse (https://flic.kr/p/7ErCMc) @phrawzty // Datadog 16

Slide 17

Slide 17

Multi & Bounding observer Interval & Luenberger observers Positive systems! Moving horizon estimations! Kalman filters in general topological spaces! Photo: CC-BY-SA https://en.wikipedia.org/wiki/State_observer @phrawzty // Datadog 17

Slide 18

Slide 18

“The Three Pillars” Photo: CC-BY-2.0 Andrew (https://flic.kr/p/xy6rdF) @phrawzty // Datadog 18

Slide 19

Slide 19

Events, Signals, Telemetry, Paths, Stories… Photo: CC-BY-2.0 Steve Jurvetson (https://flic.kr/p/2mbX3RZ) @phrawzty // Datadog 19

Slide 20

Slide 20

Understanding and Comprehension Photo: CC-ND-2.0 Hans Splinter (https://flic.kr/p/2kLH9NF) @phrawzty // Datadog 20

Slide 21

Slide 21

Unknown unknowns Photo: CC-BY-SA Stinging Eyes (https://flic.kr/p/9kreao) @phrawzty // Datadog 21

Slide 22

Slide 22

Ok, so, practically-speaking, what is observability?! Photo: CC-BY-2.0 Becks (https://flic.kr/p/p1dHTN) @phrawzty // Datadog 22

Slide 23

Slide 23

Observer / observed relationship Photo: CC-BY-SA Matt Brown (https://flic.kr/p/2hwn1DV) @phrawzty // Datadog 23

Slide 24

Slide 24

You are more than a state observer Photo: Public Domain; Nesster (https://flic.kr/p/ob5uhX) @phrawzty // Datadog 24

Slide 25

Slide 25

Observability as a property of a system is important—but so is the consumer’s capacity to make use of that property. Photo: Public Domain; fdctsevilla (https://flic.kr/p/23rPAvU) @phrawzty // Datadog 25